TRANSCENDENCE AND LINEAR RELATIONS OF 1-PERIODS

TRANSCENDENCE AND LINEAR RELATIONS OF 1-PERIODS

Editorial:
CAMBRIDGE UNIVERSITY PRESS
Año de edición:
Materia
Matematicas
ISBN:
978-1-316-51993-6
Páginas:
263
N. de edición:
1
Idioma:
Inglés
Disponibilidad:
Disponible en 2-3 semanas

Descuento:

-5%

Antes:

129,00 €

Despues:

122,55 €

This exploration of the relation between periods and transcendental numbers brings Baker's theory of linear forms in logarithms into its most general framework, the theory of 1-motives. Written by leading experts in the field, it contains original results and finalises the theory of linear relations of 1-periods, answering long-standing questions in transcendence theory. It provides a complete exposition of the new theory for researchers, but also serves as an introduction to transcendence for graduate students and newcomers. It begins with foundational material, including a review of the theory of commutative algebraic groups and the analytic subgroup theorem as well as the basics of singular homology and de Rham cohomology. Part II addresses periods of 1-motives, linking back to classical examples like the transcendence of p, before the authors turn to periods of algebraic varieties in Part III. Finally, Part IV aims at a dimension formula for the space of periods of a 1-motive in terms of its data.